
Avoiding Problem Selection Thrashing with  
Conjunctive Knowledge Tracing  
 
K. R. KOEDINGER, P. I. PAVLIK JR., J. STAMPER, 
Carnegie Mellon University, United States 
T. NIXON, AND S. RITTER 
Carnegie Learning Inc., United States 
________________________________________________________________________ 
 

One function of a student model in tutoring systems is to select future tasks that will best meet student needs. If 
the inference procedure that updates the model is inaccurate, the system may select non-optimal tasks for 
enhancing students’ learning. Poor selection may arise when the model assumes multiple knowledge 
components are required for a single correct student behavior. When the student makes an error, a deliberately 
simple model update procedure uniformly reduces the probability of all components even though just one may 
be to blame. Until now, we have had no evidence that this simple approach has any bad consequences for 
students. We present such evidence. We observed problem selection thrashing in analysis of log data from a 
tutor designed to adaptively fade (or reintroduce) instructional scaffolding based on student performance. We 
describe a conjunctive knowledge tracing approach, based on techniques from Bayesian networks and 
psychometrics, and show how it may alleviate thrashing. By applying this approach to the log data, we show 
that a third (441 of 1370) of the problems students were assigned may have been unnecessary. 
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1. INTRODUCTION  
While educational data mining is often applied to discover patterns of students learning in 
data collected from instructional software, educational data mining can also be useful for 
identifying weaknesses in the tutoring systems that generated the data. This work 
presents an example of such identification revealed from analysis of the data and 
provides a detailed remedy based on Bayesian inference.  

Student modeling depends on an accurate estimate of student knowledge to make 
effective instructional decisions. Making accurate inferences about what students know is 
challenging in situations where multiple knowledge components (skills, concepts, etc.) 
must be brought to bear, but where there is only one observation of student performance. 
If the student performs correctly, the credit assignment is straightforward. All the 
components get credit, because we have positive evidence that the student knows all the 
required components. However, if the student performs incorrectly, it is not necessarily 
appropriate to blame all the components. Any one or more of the components could be at 
fault. Determining which ones to blame is not straightforward. The Bayesian network 
[Millán et al. 2001] and psychometrics [Junker and Sijtsma 2001] literatures indicate how 
probability theory can be applied to address this problem.  In this paper, we show how 
these ideas can be combined with Bayesian Knowledge Tracing [Corbett and Anderson 
1995] to produce a “conjunctive knowledge tracing” approach.    

Consider a simple example to illustrate the blame assignment problem. Imagine a 
tutor for teaching children to evaluate simple arithmetic expressions like “3*4+5”. The 
student model could have knowledge components for each mathematical operator: 
addition, subtraction, multiplication, and division. The problem “3*4+5” requires both 
multiplication and addition (we say “problem” here, but this argument applies more 
generally to any “step” in a problem solution that is performed as a separate observable 
action). If a student gets this problem step correct, we have evidence that they know both 
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the multiplication and addition components. If the student is incorrect, it could be that the 
student does not know multiplication and does not know addition, but it is also possible 
that the student knows addition but not multiplication or even multiplication but not 
addition. Consider the case where we have evidence from previous problems that the 
student is near mastery on addition, but has been struggling with multiplication. For 
example, the student has been successful on most problem steps that involve addition 
alone, like “14+3”, but has struggled on problems that involve multiplication alone, like 
“4*8”. In such a case, if a student makes an error on “3*4+5”, it is less likely to be a 
failure of addition and more likely a failure of multiplication. That is, the student is less 
likely to have been wrong because of not knowing addition and more likely to have been 
wrong because of not knowing multiplication.  

In such a case, it does not seem appropriate to reduce the probability that the student 
knows addition as much as we would reduce the probability that the student knows 
multiplication. Nevertheless, equal blame assignment is simpler and was implemented as 
part of the original development kit for Cognitive Tutors [Corbett and Anderson 1995] 
and is currently used in practice in the widely distributed Carnegie Learning Cognitive 
Tutors [Ritter et al. 2007]. We pursue the problem of assigning blame in proportion to 
how likely it is that a knowledge component caused the error. Bayesian analysis provides 
a principled solution [cf. Millán et al. 2001, Junker and Sijtsma 2001]. 

We want a solution that not only works for two knowledge components (KCs) in 
combination, but one that generalizes to multiple KCs. For instance, in a harder problem 
step like 8-3*6, the student model might have two more KCs like “following order of 
operations” and “dealing with negative numbers”. In this case, we want to distribute the 
blame appropriately across all four KCs depending on prior estimates of the KC 
difficulties. KCs with a higher prior probability of being known should receive less blame 
than KCs with lower probability. Pardos, Heffernan and Ruiz discuss this multiple-KC 
problem [Pardos et al. 2008]. Their proposed solution is to use additional diagnostic 
follow-up questions to determine the incorrect KC, and ignore the initial incorrect 
response to the question as a whole. Similarly, Cognitive Tutor interfaces are typically 
engineered so that correctness data on multiple individual steps in a problem solution 
strategy are available [Corbett and Anderson 1995]. However, in both approaches, the 
fine-grained diagnostic questions or steps (call them “scaffolds”) still sometimes have 
multiple KCs associated with them. Perhaps more importantly, in situations when this 
scaffolding is faded and a full question is given, neither approach provides an integrated 
diagnosis of the knowledge needed both for the relevant steps and for composing the 
steps together [Heffernan and Koedinger 1997]. A more elegant solution would be useful. 

2. REVIEW OF KNOWLEDGE TRACING 
Knowledge tracing is the student model update procedure used in Cognitive Tutors 
[Corbett and Anderson 1992]. For each knowledge component (KC), there is a two state 
hidden Markov model wherein there is a probability that the student is initially in either 
the known state (we use K1 to represent this probability for “knowing” KC1 or Know-
KC1) or the unknown state (1-K1). There are three other parameters per KC: a slip 
probability (S) that a student will be incorrect even though they know the KC, a guess 
probability (G) that a student will be correct even though they do not know the KC, and a 
learning transition probability (T) that the student will learn at a particular tutoring 
opportunity and thus transition from the unknown to the known state. Because the 
challenge of the multiple-KC problem is in blame assignment, we only review here how 
the probability the student knows a KC is updated after an error observation (see Reye 
[1998] for a complete set of equations for knowledge tracing and related alternatives). 



  
 

 
(1) 

The simplistic generalization of Equation 1 to the case where multiple KCs are 
involved on an incorrect step is to update each KC in the same way, that is, all required 
components are fully and equally blamed.  

 
Table I. Example Consequences of Alternative Knowledge Tracing (KT) Approaches 

    Knowledge Estimates 
 KCs Required  Standard KT Conjunctive KT 
Step Add Mult Correct Add Mult Add Mult 

    0.960 0.300 0.960 0.300 
3*4+5 1 1 0 0.700 0.270 0.955 0.297 
6+3 1 0 1 0.938 0.270 0.993 0.297 
7+4 1 0 1 0.990 0.270 0.999 0.297 
4*7+3 1 1 0 0.893 0.267 0.999 0.287 

 
Table I illustrates the results of standard knowledge tracing (see Standard KT 

columns) for a situation like the one described above. This simplified example is intended 
to clarify the process and consequences of the simplistic rule for blame, but, as we 
describe below, this example has the essential character of actual student data collected 
by an intelligent tutor in school use. The example assumes the student has mastered the 
knowledge component Add (K1 = .96) but not Multiply (K2 = .3). The probabilities of 
slipping, guessing, and learning parameters are set at 0.05, 0.2, and 0.25, respectively, for 
both KCs in this example. When a student makes an error on a problem step involving 
both Add and Multiply, like “3*4+5”, the estimates of knowing Add and Multiply are 
updated as follows. The estimate for Add (K1) is updated according the formula above 
(.05*.96 / [.96*.05 + (1-.96)*(1-.2)]) to be 0.6. Knowledge tracing has a Markov property 
such that KCs have a probability of transitioning from the unknown state to the known 
state, that is, of being learned at each opportunity to learn. The transition probability in 
this example is 0.25 and when we apply it (.6 + (1-.6)*.25) we get a new value for K1 = 
0.7. The analogous computations yield a new value for the Multiply, K2 = 0.27. 

The key point is that the Add KC drops significantly, to 0.70 – exactly as much as if 
the student had made an error on a problem step involving addition only (like 5+7). A 
sensible response of an intelligent tutor to this updated student model is to help the 
student get Add back up to mastery (a .95 threshold is used in Cognitive Tutors) by 
giving the student further practice (and as-needed instruction) on a problem involving 
Add (e.g., “6+3”). In fact, in this scenario, a student would have to get two problems 
involving Add right before getting back to mastery – see the 6+3 and 7+4 rows in Table 
I. The first raises the estimate to .938, still below a .95 mastery threshold, and the second 
to .990. If the student subsequently gets another problem with both KCs (e.g., “4*7+3”) 
wrong, the estimate for Add would again drop back below mastery. Another problem 
involving Add would then be selected. This would be wasting student time and energy if, 
in fact, they got the combined problem (“3*4+5”) wrong because of not knowing 
Multiply. In fact, the tutor and student might continue to thrash with the tutor repeatedly 
giving unneeded easy problems after the student errs on a harder problem.  

Gong, Beck, & Heffernan [Gong et al. 2010] mentioned limitations of the knowledge-
tracing algorithm when a problem or step is coded with multiple knowledge components. 
They were not addressing the issue, like we are, of on-line updates of the student model 
estimates of the probability a component has been learned. Others [Millán et al. 2001, 



 

 
 

Junker and Sijtsma 2001] have presented relevant applicatoins of Bayesian inference to 
address conjunctive combinations of skills and we build on that work.  

3. CONJUNCTIVE KNOWLEDGE TRACING FOR FAIR BLAME ASSIGNMENT 
The algorithm we present modifies knowledge tracing by changing the equations that 
deal with updating the student model after a student error (see Eq 1). The equations for 
updating after correct student responses are kept the same.  

We present the case for two KCs first and generalize below to the case where multiple 
KCs are needed. Both the P(Error|Know-KC1) and P(Error) equations need to be 
modified. We use K1 and K2 to indicate the probabilities that KC1 and KC2 are known, S1 
and S2 for their slip parameters, and G1 and G2 for their guess parameters. We start with 
P(Error), because it is simpler. An observed error can result from an unobserved error 
either in the execution of KC1 or in the execution of KC2. An error in the execution of a 
KC occurs either when the KC is known but the student slips (e.g., K1*S1) or when the 
KC is unknown and the student does not guess correctly (e.g., (1-K1)*(1-G1)). This 
formulation is shown in Equation 2. 

 
(2) 

We can find P(Error|Know-KC1) by plugging K1=1 into the Equation 2 above and the 
result is shown in Equation 3. 

 
(3) 

An alternative formulation of Equation 2 that is easier to compute and easier to 
generalize to many KCs is shown in Equation 4.  

 
(4) 

Equation 4 computes the probability of error as one minus the probability of correct 
performance. To get a step correct requires that both KC1 and KC2 are executed correctly, 
which can be computed as the product of the probabilities of executing each KC correctly 
(this approach assumes KC execution is independent). Correct execution of a KC occurs 
either when the KC is known and the student does not slip (e.g., K1(1-S1)) or when the 
KC is unknown and the student guesses correctly (e.g., (1-K1)G1).  

The combined update formula (Equation 5) gets applied for each KC, as was done in 
the example above. Applying this approach to the example above, we get the values 
shown in the “Conjunctive KC” columns in Table I. After the student made an error on 
“3*4+5”, the estimate for Add (K1) was updated according to the formulas above to 0.94. 

 
(5) 

Applying the learning (or transition) probability (.94 + (1-.94)*.25) yields a new value for 
K1 = 0.955. The analogous steps yield a new value for the Multiply, K2 = 0.297. Unlike 
Standard Knowledge Tracing, the estimate for Add, at 0.955, stays above the mastery 
threshold of .95 and thus the tutor would not assign a potentially unnecessary addition 
problem. The potential is thus reduced for unproductive cycling back and forth or 
thrashing between hard and easy problems that may occur with standard knowledge 
tracing (as illustrated in Table I). 

The key insight for blame assignment with two KCs is that the probability of being 
incorrect given that KC1 is known is no longer just the probability of slipping on KC1. 



  
 

There is also a chance that the student made an error in executing KC2. To generalize to 
multiple KCs, we need the P(Error|Know-KC1) formula to account for the possibility that 
an error can result from failure to execute on any of the other needed KCs. 

First, Equation 6 shows the general equation for P(Error) when we use the 1-
P(Correct) formulation (as anticipated in Equation 4) and compute P(Correct) as the 
product of executing all of the N KCs correctly: 

 
(6) 

Now, for the general equation of P(Error|Know-KCj) we need to a way to compute the 
disjunction (logical or) of executing incorrectly all of the required KCs besides KCj. 
Because conjunctions are simpler to compute than disjunctions, we use the 
transformation in Equation 7 to formulate Equation 8. 

 
(7) 

Equation 8 replaces the term in Equation 3 for incorrect execution of K2 with the 
disjunction of incorrect execution of all the required KCs but KCj. Thus, note the use of 
“excluding KCj” in Equation 8. And note, as per Equation 7, the use “1-” both outside 
and inside the product (∏). 

 
(8) 

Finally, Equation 9 is the Conjunctive Knowledge Tracing alternative to blame 
assignment in Standard Knowledge Tracing (Equation 1) and it completes the 
generalization from two KCs (Equation 5) to any number of KCs. 

 

(9) 

4. CONJUNCTIVE KNOWLEDGE TRACING ON REAL DATA 
In the introduction, we illustrated the possibility of a thrashing problem that can result 
from unfair blame assignment whereby a student is repeatedly assigned a hard problem 
(which they get wrong) and then unnecessary easy problems (which they tend to get 
right). We turn to a demonstration of this thrashing problem in real student use of a tutor. 
We then describe how use of Conjunctive Knowledge Tracing can alleviate this problem. 
The data come from 120 students working on a geometry area unit of the Bridge to 
Algebra Cognitive Tutor and, in particular, from an experiment to test a new KC model 
produced through a human-machine discovery method [Stamper and Koedinger 2011].  

This implementation of the tutor used standard knowledge tracing, but we did make a 
change to the problem selection algorithm designed to create a better learning experience. 
The original problem selection tries to find problems that have the most opportunities for 
the student to address their least-mastered KCs (along with other factors, like minimizing 
the number of mastered KCs and encouraging variety). In the usual situation where there 
is only one KC per problem step this has been a reasonable approach. However, when 
there are multiple KCs per step, this current "maximize unmastered" algorithm criteria for 
problem selection will prefer problems that involve more unmastered KCs per step 
(harder problems) over problems that have fewer unmastered KCs per step (easier 
problems). In order to create a gentle slope in the learning trajectory, we modified the 
original problem selection algorithm to select problems that have as few unmastered KCs 
(but at least 1) as possible. Thus, students are more likely to be given easier (but not 
mastered) problems first and then, once these appear to be mastered, more complex 



 

 
 

problems are selected. If, in turn, evidence from poor performance on complex problems 
suggests weaknesses in specific component KCs, easier problems will be selected again 
to bolster student mastery before returning to hard problems. The intention, then, is to 
adjust difficulty (fading or reintroducing scaffolding) to optimally adapt to student needs. 
This change revealed the thrashing problem and a practical weakness of standard 
knowledge tracing when multiple KCs are required on a step. The goals of the change in 
problem selection were to adaptively fade and “unfade” (reintroduce) scaffolding based 
on student performance.  Fading occurs in transition from “scaffolded” problems, which 
tend to have 1 KCs per step, to “unscaffolded” problems, which tend to have key steps 
with multiple KCs. It is adaptive in that the transition occurs after students have 
demonstrated mastery of the KCs in the scaffolded problems. Scaffolding may be 
reintroduced based on evidence of too much failure on unscaffolded problems. 

4.1. Results: Problem selection thrashing from poor blame assignment 
Similar to the arithmetic example above, we modified a geometry area unit of the Bridge 
to Algebra Cognitive Tutor to include a mix of harder problem types in which some steps 
require many KCs (e.g., setting and executing subgoals to find a square area, circle area, 
and the difference) and easier problem types in which steps require just one or a few KCs 
(e.g., subtracting two areas).  Four types of problems culminated with the student finding 
the area of an irregular shape (e.g., the left-over area when a circle is cut from a square) 
from the regular shapes that make it up.  To aid understanding of the example of real 
student performance shown in Table II, we describe these problem types. The easiest 
problem type, called an “area scaffold problem” and displayed as Easy in Table II, gives 
the areas of the component shapes to focus students’ attention on how to combine them to 
find the irregular shape rather than on finding component areas themselves. The student 
need only recognize the need for area composition (the Comp KC in Table II) and 
perform the addition or subtraction (AddAreas and SubtrAreas KCs in Table II). The 
slightly less easy “table scaffold” problems (displayed as Easy’ in Table II) require the 
student to find the regular areas on their own, but explicitly prompt (or scaffold) the 
student to do so with a labeled column in a table interface widget where the areas are to 
be entered.  While these problems require area computations (see the Area KC in Table 
II), those computations are separate steps in the interface and so the Area KC is not 
involved in the “composition” step to compute the irregular area that is displayed in 
Table II. In the harder “no scaffold” problems, students are asked to enter only the final 
irregular area (requiring up to four KCs in a single step) without any interface support to 
first find the component areas. 

Turning to the student performance data, we found that the new problem selection 
algorithm described above worked well in that the easiest problem type (area scaffold) 
tended to be selected before the somewhat less easy problem type (table scaffold) and 
these before the hardest problem types (problem scaffold and no scaffold). However, we 
were surprised at how many of the easier problems students were given. On closer 
inspection we found the kind of cycling between easy and hard we illustrated above. 

Table II provides an example from one of the students. The results are displayed 
starting after the student has been successful on two Easy problems and failed on a Hard 
problem. Before describing this example in more detail, first note how the student keeps 
getting assigned many Easy problems (and succeeds at them). These problems were 
assigned based on standard knowledge tracing (SKT), but, if conjunctive knowledge 
tracing (CKT) had been used, the five problems in the bolded row numbers (5, 8, 10, 12, 
and 14) would not have been assigned.  In these rows, all of the CKT estimates are above 
0.95 whereas some of the SKT estimates are not (see the bolded numbers). SKT assigns 



  
 

these Easy problems because when errors are made on Hard problems, it attributes too 
much blame to easy KCs (SubtrAreas & AddAreas) that should be primarily attributed to 
hard KCs (SubGoal).  
 

Table II. Problem selection thrashing from poor blame assignment in real student data. 

 
 
Going through Table II in more detail, row 1 shows the KC estimates for SKT and 

CKT just before this sequence begins. Row 2 shows that an Easy problem was selected 
next. The estimates of only the KCs that are required for the composition step in that 
problem are shown. Even though the required KCs are above the 0.95 mastery threshold 
(at 0.98 and 0.997 respectively), the selection of an Easy problem is appropriate because 
there are other Area steps (not shown) in this problem (indicated as Easy’, rather than just 
Easy) that are not above mastery (at 0.62). The student gets this composition step wrong 
(indicated by 0 in the Correct column). The updates for the relevant KCs can be seen in 
row 3 for both SKT (now 0.89 and 0.98) and CKT (now 0.94 and 0.99). Another Easy 
problem is selected (row 3), which is appropriate according to both models as the 
Compose KC is below .95 in both (.89 and .94). The student gets it right.  

Now two easy problems are selected (rows 4 and 5) where area addition (AddAreas) 
is needed instead of area subtraction (SubtrAreas). The SKT estimate of AddAreas is 
below mastery for both problems, but goes above mastery before the second problem for 
the CKT estimate (see the bolded .97 vs. .91 in row 5). If problem selection had been 
driven by CKT, this problem would not have been selected and, arguably, the students’ 
time would not have been wasted practicing mastered skills. (Note that the difference in 
the AddAreas estimates in Row 1 is caused by the difference in blame attribution on the 
one Hard problem the student saw before the data shown in Table II.) Rows 6-8 more 
clearly illustrate this difference in blame attribution. The student gets two consecutive 
Hard problems wrong and the SKT estimate of SubtrAreas drops to 0.87. However, it is 
likely that the student’s difficulty is not with SubtrAreas, but with the SubGoal KC 
(knowing to find the areas of an irregular shape by finding the areas of the regular shapes 



 

 
 

that make it up). Indeed, the CKT model puts most of the blame for these errors on 
SubGoal and little blame on SubtrAreas (which does drop slightly from .998 to .997). 

4.2. Results: Fair blame assignment saves instructional time 
To demonstrate that the example above is not idiosyncratic to the one student, we 
repeated the analysis illustrated above for all 120 students. We focused on the data from 
the first curriculum section where some steps are coded with multiple KCs (this is section 
3 in Geometry Area unit).  We used CKT to produce new KC estimates on each problem 
solved by each student as illustrated in Table II. We then identified the problems where 
all KCs involved were above the 0.95 mastery level according to the CKT estimates – 
like the 5 bolded problems in Table II.  Of the 1370 problems, 441 or about 1/3 involved 
only mastered KCs according to CKT!  If the problem selection had been driven by CKT, 
these problems would not have been given to students. These problems are likely to be 
unnecessary and are taking student time away from learning more difficult skills. (While 
the problem selection algorithm is designed to avoid giving mastered problems, 15 of the 
1370 problems selected using SKT were mastered – still far below 441.) 

Some of the 120 students, those with more prior knowledge, finished this section in as 
few as four problems (by getting all steps correct). Many others struggled and, like the 
student shown in Table II, got stuck in this thrashing between too many easier problems 
they tended to be able to solve and too few harder problems that exercised the 
composition (or subgoaling) skills they needed to acquire. The student in Table II is 
typical of these struggling students and, according to conjunctive knowledge tracing, five 
of the sixteen problems this student was given were unnecessary. For 33 of the struggling 
students, the tutor ran out of relevant problems and moved them on to the next section 
even though some KCs had not been mastered.  

Current cognitive tutors have many steps coded with multiple KCs, for instance, in the 
algebra tutor some steps are coded with broad arithmetic skill categories (e.g., large vs. 
small numbers, rationals vs. whole numbers) in addition to the target algebraic skill. 
However, multiple KC coding occurs less often than it should. Doing so has often been 
avoided through the use of highly scaffolded interfaces, which have the downside of not 
assessing students in the unscaffolded context. Further, many steps that are currently 
coded with a single KC may be better modeled with mutiple KCs [cf. Yudelson, Pavlik, 
and Koedinger, 2011].  

5. DISCUSSION & CONCLUSIONS 
We have presented an illustration of the problem of assigning blame when multiple 
knowledge components are required for an action and the student performs it incorrectly. 
A simple approach, currently used in practice, is to blame all components equally even 
though it may be just one (or some subset) that the student has not yet mastered. Until 
now, there has appeared to be little consequence to this simple approach. However, when 
we modified the problem selection algorithm to facilitate fading and unfading of 
problems with scaffolding, we found a negative consequence in the form of  thrashing in 
problem selection.  In the data from the Geometry Cognitive Tutor we found that real 
students were being assigned too many easy problems and not enough hard ones. Based 
on prior Bayesian student modeling work [Junker and Sijtsma 2001; Reye 1998; 
VanLehn et al. 1998], we adapted the standard knowledge tracing algorithm to create  
Conjunctive Knowledge Tracing (CKT), which provides a practical solution to fair blame 
assignment. CKT has the potential to make much better use of students’ time in curricula 
that provide students with an adaptive learning trajectory from simple problems isolating 
key components of knowledge to difficult problems where multiple skills or concepts are 
required to produce a single response. 



  
 

Alternative solutions to the blame assignment problem have been proposed [Conati, 
Gertner and Vanlehn 2002; Pardos and Heffernan to appear; Reye 1998; VanLehn, Niu, 
Siler and Gertner 1998]. One simpler approach is to only blame the “hardest” KC, that is, 
the one with the lowest current probability. There are two potential limitations of this 
approach.  First, if KCs are truly conjunctive and independent, such an approach will 
overly penalize the hardest KC and under penalize the others. We can see the difference 
in penalty in the KC values displayed in Row 1 of Table II (these values results from a 
failure on a hard problem just before this excerpt begins).  Blaming only the hardest KC, 
which is SubGoal in this case, would yield a value of 0.49 (same as SKT would produce 
for this KC) whereas CKT yields a value of 0.70 (shown under Subgoal in the 
Conjunctive KT section). Thus, this blame-the-hardest approach could result in 
inappropriately requiring students to practice too many (harder) problems requiring the 
over-penalized KC and too few (easier) problems requiring the under-penalized KCs.  A 
second limitation of the blame-the-hardest approach is that it does not facilitate the 
possibility of “unfading”, that is, of returning to scaffolded problems in the case that 
repeated failure on unscaffolded problems suggests (even with the softer penalty that 
CKT produces) the need to revisit easier problems. 

Another simpler approach is to concatenate multiple KCs into a single combined KC. 
This approach has the downside that the student model has no information about 
knowledge overlap in related tasks and thus cannot be used in problem selection for the 
kind of gradual fading of scaffolding (going to harder problems when the student is 
ready) or reintroduction of scaffolding (going back to easy problems if needed) that is 
possible with CKT. 

A more complex approach to the multiple-KC problem is to use a complete Bayesian 
network for the student model [e.g., Conati et al. 2002]. One immediate point of contrast 
with CKT is in the high effort required to engineer a student model as a Bayesian 
network. CKT can be relatively simply added to an existing model-tracing or constraint-
based tutor as a plug-in, replacing the existing Knowledge Tracer if present. On the other 
hand, a full Bayesian network can represent dependencies between KCS and is not 
restricted to modeling KC learning only in terms of students direct experiences with those 
KCs. A Bayes net gives a modeler more freedom to hypothesize more complex 
interrelationships, like the learning of one KC enhancing another.  Such freedom, 
however, may come at the loss of parsimony relative to the more constrained CKT 
approach whereby a set of KCs and a few direct computations on the KC parameter 
estimates may well represent all task difficulty and learning transfer relationships. 

CKT is one solution within the broader space of Bayesian networks and Markov 
models for student modeling. As already mentioned, past work [Junker and Sijtsma 2001; 
Millán, Agosta and Pérez de la Cruz 2001] has articulated the multiplicative combination 
of noisy components. We have adapted this approach into the standard knowledge tracing 
by maintaining the Markov transition probability, but replacing the blame assignment 
with this multiplicative combination.  Others have also incorporated the independence 
assumption and thus the multiplicative combination of components, but have put the 
noise (guess and/or slip parameters) at the level of the conjunction (sometimes called a 
“noisy-AND”) rather than at the level of the components [Conati et al. 2002]. In the 
psychometrics literature [Junker and Sijtsma 2001], the difference in whether the noise 
parameters are at the component level or the conjunction level is characterized by the 
contrast between the DINA (deterministic inputs noisy AND) and NIDA (noisy inputs 
deterministic AND) models. CKT is an extension of NIDA (adding the transition 
probability), with a slip and guess parameter for each conjunct in the AND. While the 
CKT and NIDA models have more parameters per AND relation than DINA, they can 
have fewer parameters in an overall student model in the case that there more AND 



 

 
 

relations than components. For instance, there are four (2n-n-1) possible AND 
relationships of three (n) components. Whether or not these theoretical differences make 
any practical difference will require future empirical comparison. 

Whether and when CKT provides a more or less effective user model than more 
complex formulations such as Bayes nets will have to await future research. 
Nevertheless, an important contribution of this paper is the empirical evidence that 
comparing such alternatives is worth it. The problem selection thrashing we observed 
indicates that fair blame assignment can be a real problem and better solutions may have 
significant impact on student users of tutoring systems. The need for such a solution 
comes about in situations where we want a tutoring system to make dynamic and 
adaptive decisions about the fading of scaffolding or the “unfading” or reintroduction of 
scaffolding. Such capability would seem to be an important feature of a truly adaptive 
tutoring system and one that can be driven by educational data mining.   
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